您的位置: 首页 >图片新闻 > 正文

第五届CCF大数据学术会议在广东深圳圆满结束

2017-10-18 18:05:38来源:

科技评论报道:2017年10月13日至15日,第五届CCF大数据学术会议(CCF BigData 2017)在深圳市麒麟山庄举行。本届会议由中国计算机学会主办,中国计算机学会大数据专家委员会和深圳大学联合承办。雷锋网也作为协办单位,全程参与会议并进行报道。

CCF大数据学术会议的举办目的是探讨大数据相关领域面临的技术挑战,共享各类技术创新思想,展示中国大数据技术的最新研究进展,交流大数据的应用成果和研发经验。会议中以学术内容为主,也邀请了一些产业界人士共同分享真知灼见。在3天会议中,雷锋网 AI 科技评论记者感受到大数据研究在深度学习的帮助下变得越来越“深”,而大数据研究的发展也让它自身变得越来越“广”。

议程方面,本届会议设置了多个特邀演讲,邀请国际知名的教授和产业界人士分享自己在大数据方面的见解和成果,在稍后的 Panel(圆桌论坛)中他们也围绕着大数据话题展开了精彩的讨论;多个专题论坛中,二三十位嘉宾在不同的主题下介绍了自己的研究。会议也设置了论文接收和评选,共收到论文投稿273篇,录用145篇(录用率53%),并通过现场论文报告评出最佳基础论文、最佳应用论文、最佳学生论文各一篇。

特邀演讲

本届大会邀请了四位特邀嘉宾作主题报告。两天时间内,四场精彩的报道陆续在主会议厅进行,众多台下听众也以饱满的热情聆听报道并向嘉宾提问。

基于大数据的信息物理能源系统安全节能优化

西安交通大学管晓宏教授带来了题目为“基于大数据的信息物理能源系统安全节能优化”的主题报道。管晓宏教授历任西安交通大学系统工程研究所所长、机械制造系统工程国家重点实验室主任;2000年任长江学者特聘教授,2008年至今任电子与信息工程学院院长。管晓宏教授是IEEE Fellow,现任IEEE Transactions on Smart Grid编辑,《控制理论与应用》等期刊编委,担任国务院学位办学科评议组成员,主要从事复杂能源电力等网络化系统的经济性与安全性,信息物理融合系统包括智能电网、传感器网络等,网络信息安全等领域的研究。演讲中,管晓宏教授介绍了信息物理融合系统在解决当前能源和环境危机问题中的重要作用;关于新能源应用的潜力和问题给听众带来了新的感知和思路。

Big Data and Deep Learning: Challenges and Opportunities

乔治亚州立大学计算机系主任潘毅(Yi Pan)带来了主题为“大数据和机器学习:挑战和机遇”的演讲,介绍了深度学习方法在大数据处理方面的应用,这是典型的大数据的“深”。潘毅教授历任乔治亚州立大学计算机科学系主席、生物学院副院长与主席,还是中南大学访问长江讲座教授。潘毅教授的研究领域包括并行计算和云计算,无线网络和生物信息,已发表200余篇论文,共同创作、编辑43本书籍,总引用量超过8000,还在包括7个IEEE Transaction的15种期刊任主编或编委会成员。

演讲中,潘毅教授结合自己团队的多项工作介绍了深度学习方法在大数据问题中的应用以及深度学习自身问题的解决,比如数学方法替代实验方法找到优化解决方案、新网络架构解决梯度消失问题、高维数据如何降维应用、如何解决并行计算框架的迁移性问题等。潘毅教授也提醒大家,即便深度学习现在非常火热,也别指望照抄现有方案就能达到好的效果,找到合适的架构才是应用中最重要的。

Broad Learning on Big Data: A Fusion Perspective

清华数据科学研究院院长、伊利诺大学芝加哥分校 UIC 计算机系教授俞士纶(Philip S. Yu)的演讲主题为“Broad Learning on Big Data: A Fusion Perspective”,介绍了大数据的“广”(“广度学习”)的概念和相关研究成果。俞士纶教授曾长期在IBMWatson研究中心任职,领导建立了世界著名的数据挖掘和数据库部门。俞士纶教授是ACM、IEEEFellow,2013年获得IEEE计算机社区技术成就奖,2016年获得ACMSIGKDD创新奖(Innovation Award);2011至2017年间,俞士纶教授任ACM Transactions on Knowledge Discovery from Data主编。俞士纶教授的超过1000篇论文引用总数超过84000次,H-index高达136。

演讲中俞士纶教授介绍道,解决真实世界问题往往需要多个不同的数据源,并建立多数据源学习模型。依托异质信息网络HIN(Heterogeneous Information Network)和MetaPath学习,俞士纶教授介绍了广度学习综合利用多个数据集中的信息解决实际问题的成果,比如新药研发、社交内容推荐、电商平台商品推荐、推文的发布地址定位等。在听众问答中,俞士纶教授也表示MetaPath学习有较好的解释性,更可以结合人类的先验知识提高学习效率和效果。

AI系统的ABCD

现任联想集团首席技术官、高级副总裁的芮勇博士带来了题为“AI系统的ABCD”的演讲,解析了人工智能系统中重要的A、B、C、D四个重要部分。在加入联想之前,芮勇博士是微软亚洲研究院常务副院长,曾在微软工作18年。芮勇博士是IEEE、IAPR、SPIE Fellow和ACM Distinguished Scientist,曾获ACM TOMM 2017年度最佳论文奖、IEEE Computer Society 2016 技术成就奖、IEEE Signal Processing Society 2016 年度最佳论文奖等多个诸多奖项。自2014年至今,他连续三年入选Elsevier中国高被引学者计算机学科的前三名。芮勇博士还担任IEEE的多个国际学刊主编或编委,及ACM SIG Multimedia中国区首任主席。

芮勇博士在演讲中介绍了人工智能/深度学习系统的发展历程和他眼中重要的组成部分。芮勇博士的讲解深入浅出,清晰地介绍了Algrithm算法、Bussiness行业、ComputerPower计算力、Data数据四个重要部分的现状和未来的挑战,尤其是在Bussiness行业方面,芮勇博士也真切地分享了自己意识到“垂直行业专家+计算机专家才能造出有用的系统”的历程。

推荐阅读
  • 聚焦鹏城
  • 深圳指南
  • 深圳美食
  • 深圳购物
  • 电影情报
  • 品牌传播
  • 企业资讯